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Abstract

The e.ciency of micro!cell aluminium honeycombs in augmenting heat transfer in compact heat exchangers is
evaluated using analytical models[ For convective cooling\ the overall heat transfer rate is found to be elevated by about
two order of magnitudes when an open channel is designed with an aluminium honeycomb core[ The performance is
comparable to that achieved by using open!celled aluminium foams\ but attributed to di}erent mechanisms[ At low
Reynolds numbers "³1999#\ the ~ow is essentially laminar in honeycombs\ in contrast to the largely turbulent ~ow in
metal foams^ this de_ciency in ~uid dynamics is compensated for by the superior surface area density o}ered by
honeycombs over foams[ Another advantage of designing heat sinks with honeycombs is the relatively small pressure
drop experienced and minimal noise generated by the laminar ~ow[ The overall heat transfer rate of the heat sink is
maximised when the cell morphology of the honeycomb is optimised[ However\ the optimal cell morphology is not
constant but dependent upon the geometry and heat transfer condition of the heat sink as well as the type of convective
cooling medium used[ For air cooling\ the optimal relative density of the honeycomb is about 9[0[ Other related e}ects\
such as cell orientation and double cell wall thickness\ are discussed[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a cell size
Bi Biot number
cp speci_c heat
Dh hydraulic diameter
f friction factor
h local heat transfer coe.cient
h¹ overall heat transfer coe.cient
H\ L\ W thickness\ length and width of sandwich heat
exchanger
I dimensionless scaling index
l cell wall length
"L�\ x�# characteristic length scales
m 0z 1Bi:t
m¾ mass ~ow rate
Nu Nusselt number\ hDh:lf

"p\ Dp# pressure and pressure drop
Pr Prandtl number\ cpmf:lf

q heat ~ux
Q total heat transfer rate

� Tel[] 9933 0112 655205^ fax] 9933 0112 221551^ e!mail]
tjl10Ýeng[cam[ac[uk

Re Reynolds number\ vfDh:nf

t cell wall thickness
T\ T¹ temperature and its average
v velocity
"x\ y\ z# global Cartesian coordinates[

Greek symbols
DTm logarithmic mean temperature di}erence
l thermal conductivity
"j\ h# local coordinates along cell walls
m shear viscosity
n kinematic viscosity
r density[

Subscripts
e exit of heat sink
f ~uid
s solid
w plate wall
9 inlet of heat sink[

0[ Introduction

Traditionally\ honeycombs made of metals have been
mainly used as the core of sandwich panels for highly
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engineered structural applications where high strength at
minimum weight are required "e[g[\ aircraft and snow:wa!
ter skis#[ Recent advances in low!cost processing have
enabled the fabrication of corrosion resistant aluminium
honeycombs having cell sizes on the order of 0 mm ð0Ł[
The surface area to volume ratio "i[e[\ the surface area
density# of a typical micro!cell honeycomb is about 2999
m1 m−2\ making them ideal candidates for compact heat
exchanger applications where high surface area density is
required "e[g[\ electronic packages and airborne devices#[

For nearly two decades\ numerous e}orts have been
spent on developing innovative heat dissipation media
for high power electronics[ These include micro!channels
and pin!_n arrays ð1\ 4\ 00\ 01Ł[ More recently\ it has
been demonstrated both theoretically and experimentally
that\ when cooled by forced convection\ three!dimen!
sional open!celled metal foams attached to a heated sub!
strate comprise a compact and highly e.cient heat dis!
sipation medium for high power electronics ð1Ð4Ł[ This\
together with the cooling concepts at the device level
"micro!channel heat pipes ð5Ł# and at the assembly level
"highly conducting heat spreaders ð6Ł#\ complete the three
critical elements in the thermal management of increas!
ingly powerful electronic packages which demand power
densities in excess of 096 W m−1[ Are aluminium honey!
combs good compact heat exchangers< At the same rela!
tive density level\ how are they competing with the three!
dimensional open!cell metal foams such as ERG "trade
name Duocel#< Does there exist an optimal cell mor!
phology which would maximise the heat transfer
e.ciency of a metallic honeycomb< Answers to these
questions will be provided in this paper[

1[ The model

The prototype problem considered is shown in Fig[
0"a#\ where the cooling of a compact multi!chip module
is enhanced by forced convective ~ow across a metal
honeycomb medium of thickness H sandwiched between
two ~at rectangular plates of length L and width W[ The
honeycomb consists of regular hexagonal cells of cell size
a �z 2l\ cell wall length l and thickness t "Fig[ 0"b##[
Let ls and rs be the thermal conductivity and density of
the solid of which the cell wall is made[ The plates holding
the chips are assumed to be thin and have large thermal
conductivity so that the through!thickness heat con!
duction may be neglected[ The module is thermally insu!
lated at the top "z � 9# and bottom "z � H# by protective
covers "not shown in Fig[ 0"a## and\ without loss of
generality\ it is assumed that the sandwich structure is
capped and thermally insulated at both ends y � W:1
and y � −W:1[ Two types of heat transfer boundary
conditions are prescribed] Type I applies when both
plates are isothermal with uniform temperature Tw

whereas Type II holds if the plates release uniform heat

~ux "iso~ux# q9 to the ~uid!saturated porous medium[ It
is expected that these two boundary conditions lead to
lower and upper bound solutions to the problem[ Cooling
~uid\ velocity v9\ temperature T9 " ³ Tw# and pressure p9\
is forced into the honeycomb at the inlet "x � 9# and exits
at the outlet "x � L# with temperature Te and pressure pe[
The width of the channel\ W\ is assumed to be much
larger than the cell size a so that the thermal and hydraulic
_elds are independent of the coordinate y[

It proves convenient to divide the prototypical heat
sink into slices of equal width\ as illustrated in Fig[ 0"c#
for a honeycomb having uniform cell wall thickness and
with two of the cell walls oriented parallel to the plate
surfaces*cells with double wall thickness and oriented
di}erent from that shown in Fig[ 0 will be considered
later[ Each slice consists of a corrugated wall with _ns
each of length l:1 attached at periodic position\ distance
a:1 apart\ along the wall[ Symmetry considerations dic!
tate that the _ns are all thermally insulated at the tips[
The total number of such slices in the heat sink is 1W:2l[
Let h be the average heat transfer coe.cient associated
with the corrugated wall and let T"x\ z# be the solid tem!
perature averaged over the cross!sectional area of the wall
at location x[ "As t ð l for most metallic honeycombs\
the variation of T across the cell wall thickness may be
neglected[# Let lf\ rf\ nf\ mf and cp denote the thermal
conductivity\ density\ kinematic viscosity\ shear viscosity
and speci_c heat at constant pressure of the ~uid\ re!
spectively[ The usual assumptions of steady state\ and
constant thermal:physical properties of both ~uid and
solid are made[ In the subsequent sections of the paper\
we shall consider the following problems\ all posed for
the thermal model of Fig[ 0]

+ overall heat transfer e.ciency of the system under
Type I condition^

+ overall heat transfer e.ciency of the system under
Type II condition^

+ e}ects of cell orientation and double cell wall thickness^
+ optimal cell size and relative density for best heat trans!

fer performance[

2[ Isothermal surfaces

The heat transfer analysis is based on the corrugated
wall model shown in Fig[ 0"c# and is accomplished in two
steps[ First\ we neglect the e}ects of _n attachments to
obtain the heat lost to the cooling ~uid from a single
corrugated wall^ the result is then modi_ed to include the
additional heat loss from the _ns[ The thermal _elds of
the entire heat sink are obtained subsequently using an
energy balance method similar to that described in ð1Ł[
To complete the model\ other related issues such as local
heat transfer coe.cient\ characteristic length scale\



T[J[ Lu:Int[ J[ Heat Mass Transfer 31 "0888# 1920Ð1939 1922

Fig[ 0[ A prototypical design of compact multi!chip module cooled by forced convection through metal honeycomb] "a# notations^
"b# hexagonal cells with two horizontal walls\ two vertical walls and two double thickness horizontal walls\ respectively^ "c# corrugated
wall with _n attachments^ and "d# de_nition of local coordinates[ The heat transfer boundary condition shown is isothermal temperature
on the substrate surfaces[

pressure drop and overall heat transfer coe.cient are
discussed[

2[0[ A sin`le corru`ated wall without _ns

With reference to Fig[ 0"c#\ it is straightforward to
show that\ in the absence of _n attachments\ the variation

of temperature T along the length of a single corrugated
wall is governed by

d1T

dj1
−

1h
lst

"T−Tf# � 9 "2[0#

where Tf"x# is the mean ~uid temperature at location x
"to be determined later in Section 2[2# and j � 1z:z2 is
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the local coordinate along the wall with the origin j � 9
coinciding with z � 9[ The e}ects of radiation at the wall
surface can be shown to be small\ hence neglected in the
derivation of equation "2[0#[ Subjected to the boundary
condition that T � Tw at j � 9 and at j � 1H:z 2\ equa!
tion "2[0# can be solved to arrive at

T"x\ j# � Tf "x#¦"Tw−Tf "x##

×
cosh "z1 Bi"H:z2−j#:t#

cosh"z1Bi:2H:t#
"2[1#

where Bi � ht:ls is the Biot number[ It is expected that
Bi ð 0 for typical aluminium honeycombs[ The average
wall temperature is

T¹ "x# � Tf "x#¦"Tw−Tf "x##
tanh"z1 Bi:2H:t#

z1 Bi:2H:t
[ "2[2#

Thus\ T¹ "x# : Tf"x# if Bi : 9 and T¹ "x# : Tw if Bi : �[
The total heat lost to the cooling medium per unit length
of the corrugated wall is

q0 � −1lst
dT
dj bj�9

� 1z1 Bi ls "Tw−Tf# tanh"z1 Bi:2H:t#[ "2[3#

Note that q0 � −1lst"dT:dz# =z�9[

2[1[ Effects of _ns

The contribution to heat loss from _n attachments is
analysed below[ For simplicity\ consider a honeycomb
heat sink having the same geometry as shown in Fig[ 0"a#
but with only one cell across the thickness "in the z!
direction#[ A slice of the heat sink with width 2l:1 is
shown in Fig[ 0"d# for which exact solutions for the
variation of temperature T"x\ j# along the corrugated
wall and T"x\ h# along the _n can be obtained[ The local
coordinates j and h are de_ned in Fig[ 0"d#[ For T"x\ j#\
the governing equation is still given by equation "2[0#\
but the heat transfer boundary conditions are di}erent]
T � Tw at j � 9 and T � Tn at j � l\ Tn being the
unknown temperature at the junction between the wall
and _n[ With j replaced by h\ equation "2[0# also governs
the variation of _n temperature T"x\ h#^ the cor!
responding boundary conditions are T � Tn at h � 9 and
dT:dh � 9 at h � l:1[ In addition\ energy balance dictates
that dT:dh � 1dT:dj at h � 9 "or\ equivalently\ at j � l#[
The solutions are

T"x\ j# � Tf "x#¦"Tw−Tf "x## 6cosh mj

¦sinh mj
ð coshml¦sinh1"ml:1#Ł−0−cosh ml

sinh ml 7 "2[4a#

and

T"x\ h# � Tf "x#¦"Tw−Tf "x##

×
cosh ðm"l:1−h#Ł

cosh"ml:1#ð cosh ml¦sinh1"ml:1#Ł
"2[4b#

where m �z1 Bi:t[ The total heat loss "per unit length#
from both the corrugated wall and the _n is

q? � 1lsmt"Tw−Tf#

×
cosh"ml#−ð cosh"ml#¦sinh1"ml:1#Ł−0

sinh"ml#
[ "2[5#

Similar exact solutions can be obtained for a corrugated
wall with many _ns "Fig[ 0"c##\ but the resulting
expression is tedious and much less revealing[ An
approximate solution which would correlate closely with
equation "2[5# while maintaining the simplicity of equa!
tion "2[3# is attempted\ as follows[ In the absence of the
_n\ the solution to the problem shown in Fig[ 0"d# follows
directly from equation "2[3# as

q0 � 1lsmt"Tw−Tf# tanh"ml#[ "2[6a#

The length of the _n is 0:3 of that of the corrugated wall\
hence it is expected that the additional heat loss from the
_n is about q0:3\ with the assumption that the average
_n temperature in a micro!cell of size ½0 mm may be
approximated by the average temperature attained by the
corrugated wall[ The "approximate# solution for the total
heat loss per unit thickness of the slice may therefore be
written as

q �"0¦0:3#1lsmt"Tw−Tf# tanh"ml#[ "2[6b#

When 9[0³ ml ³ 0\ an error less then 09) is incurred
by replacing q? of equation "2[5# with q of equation "2[6b#[
For micro!cell aluminium honeycombs subjected to for!
ced air or water cooling\ ml � 9[0½ 9[4\ hence the
approximation q ¼ q? is appropriate[ For a corrugated
wall with many _n attachments "Fig[ 0"c##\ the total _n
length is half that of the wall without _ns^ the approxi!
mate solution for q follows therefore from equation "2[3#
as

q � 2z1 Bi ls "Tw−Tf# tanh"z1 Bi:2H:t[ "2[7#

2[2[ Mean ~uid temperature Tf and characteristic len`th
scale L�

The ~uid temperature inside the heat sink is\ in general\
dependent upon the spatial coordinates x\ y and z[ It is
coolest at the inlet and hottest at the outlet^ also\ a bound!
ary layer develops near the plate surface with the ~uid
layer situated closer to the plate warmer than a layer
farther away from the plate[ The present analysis does
not attempt to _nd the detailed temperature _eld of the
~uid everywhere in the heat sink\ given its complicated
cellular microstructure[ A simple model is used to solve
for the steady!state distribution of the average ~uid tem!
perature inside the heat sink\ with the assumption that
heat transfer between the ~uid and solid cell wall is gov!
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erned by a constant heat transfer coe.cient h obtainable
from laminar ~ow in a hexagonal duct "Section 2[3#[ As
is customary in the heat transfer analysis of ducts ð6Ł\ a
mean temperature Tf"x# of the ~uid is de_ned over the
cross!section of the honeycomb at location x � _xed\
such that for the control volume of length dx "Fig[ 0"a##]

m¾ cp ðTf "x¦dx#−Tf "x#Ł �"dx#ðNsq"x#¦qw"x#Ł "2[8#

where Ns � 1W:2l is the total number of slices and

qw"x# � 1h"W−Nsz2t:1#ðTw−Tf "x#Ł "2[09#

is the heat ~ux into the ~uid from both plates per unit
length excluding attributes of the honeycomb[ Thus\ Tf

is the average temperature that satis_es the First Law of
Thermodynamics[

The combining of equations "2[7#Ð"2[09# gives rise to
an ordinary di}erential equation for the mean ~uid tem!
perature Tf"x#[ The solution is

Tf "x# � Tw−"Tw−T9# exp"−x:L�# "2[00#

where L� is the characteristic length scale of the problem
given by

L� �
rfcpv9H

1h 60−
t
a

¦
t
aX

5
Bi

tanh"z1 Bi:2H:t#7
−0

[ "2[01#

From equation "2[00#\ the average ~uid temperature
inside the heat sink of height H\ width W and length L is
obtained as

T¹ f � T9¦"Tw−T9# 60−
L�
L

ð0−exp"−L:L�#Ł7[
"2[02#

Notice that in the limit L:L� : �\ T¹ f : Tw[

2[3[ Local heat transfer coef_cient h and pressure drop Dp

Heat transfer in a uniform duct of arbitrary cross!
sectional area is characterised by the Nusselt number\
Nu � hDh:lf which\ according to simple dimensional
arguments\ is a function of the Reynolds number\
Re � vfDh:nf\ and the Prandtl number\ Pr � cpmf:lf[ Here\
vf is the average ~ow velocity inside the duct and Dh is the
hydraulic diameter\ with Dh � a for a regular hexagonal
cross!section[ When Re ³ 1999\ the ~ow is laminar[ For
micro!cell honeycombs having cell sizes ½0 mm\ this is
a valid assumption under most circumstances[

The Nusselt number for laminar ~ow in a regular hex!
agonal duct with constant wall temperatures is pro!
portional to ""x:Dh#:Re Pr#−9[4 in the entrance region of
the duct "Nu ¼ 7 when "x:Dh#:Re Pr ð 0#\ and attains its
fully developed value 2[242 when Re Pr is approximately
9[0 ð6Ð8Ł[ Therefore\ for air and water\ the entrance
region has a length about 09Ð49 times the cell size a[ The

present analysis neglects the e}ects of developing ~ows
at the entrance to the heat sink\ and assumes an average
heat transfer coe.cient given by

h � 2[242
lf

a
[ "2[03#

The pressure drop across a regular hexagonal duct of
length L has been obtained by Asako et al[ ð7Ł using a
numerical method\ as

Dp �"L:a#"1frfv
1
f # "2[04#

where the small entrance e}ects have been ignored and
f � 04[954Re−0 is the friction factor for fully developed
~ows[ Equation "2[04# holds for a honeycomb heat sink
of length L where the average ~uid velocity vf is connected
to the free stream velocity v9 by

vf � v9"0¦t:1a#1[ "2[05#

2[4[ Overall heat transfer coef_cient h¹

The total heat transfer rate from the system is
Q � m¾ cp"Te−T9# which\ by noting that Te � Tf"L#\
becomes

Q � rfv9cpHW"Tw−T9# "0−exp"−L:L�# #[ "2[06#

The overall heat transfer coe.cient h¹ of the heat sink is
de_ned as ð1\ 09Ł

h¹ �
Q

1LWDTm

"2[07#

where DTm is the logarithmic mean temperature di}er!
ence]

DTm �
"Tw−T9#−"Tw−Te#

ln ð"Tw−T9#:"Tw−Te#Ł
[ "2[08#

It can be readily veri_ed from equations "2[00#\ "2[02#
and "2[08# that DTm � Tw−T¹ f[ The resulting expression
for h¹ is

h¹ � h 60−
t
a

¦
t
aX

5
Bi

tanh"z1 Bi:2H:t#7[ "2[19#

In the _eld of electronic packaging\ the inverse of h¹\
h¹−0\ is commonly known as the thermal resistance of the
system ð00Ł[

3[ Constant heat ~ux surfaces

We repeat in this section the heat transfer analysis for
the model of Fig[ 0\ assuming that the plates holding the
chips release uniform heat ~ux q9 in the direction normal
to the plate surfaces[ Let Tw continue to represent the
temperature of the plates\ except that it now depends on
the spatial coordinate x[
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3[0[ A sin`le corru`ated wall without _ns

In the absence of _n attachments\ equation "2[0# gov!
erning the variation of cell wall temperature for a cor!
rugated wall "Fig[ 0"c## is solved with the boundary con!
ditions

−ls

dT
dj

�
z2
1

q9\ at j � 9 "3[0a#

ls

dT
dj

�
z2
1

q9\ at j �
1

z2
H "3[0b#

to get

T"x\ j# � Tf "x#

¦
q9

1hz1:2 Bi

cosh "z1 Bi"H:z2−j#:t#

sinh"z1 Bi:2H:t#
[ "3[1#

It follows that the corrugated wall has an average tem!
perature

T¹ "x# � Tf "x#¦
2q9

3h
t
H

"3[2#

and that the temperature di}erence between the plate
surface and ~uid\ Tw"x#−Tf"x#\ is

Tw"x#−Tf "x# �
q9t

1lsz1 Bi:2
tanh−0"z1 Bi:2H:t#[

"3[3#

Notice that Tw"x#−Tf"x# is independent of x\ an intrinsic
feature of heat transfer in ducts with iso~ux walls[

3[1[ Effects of _ns

The e}ect of _n attachments on the thermal _elds
inside the heat sink with iso~ux plates is analysed _rst
for the simpli_ed model of Fig[ 0"d#\ as in the case of
isothermal plates[ The solutions to the variation of tem!
perature T"x\ j# along the corrugated wall and T"x\ h#
along the _n\ subjected to the boundary conditions "2[10#
and that T � Tn at h � 9\ dT:dh � 9 at h � l:1 and
dT:dh � 1dT:dj at h � 9\ are

T"x\ j# � Tf "x#¦
z2q9

1lsm 8−sinh mj

¦cosh mj

ðsinh ml¦0
1
cosh ml tanh"ml:1#Ł−0

¦sinh ml
cosh ml 9 "3[4a#

and

T"x\ h# � Tf "x#¦
z2q9

1lsm

×
cosh ðm"l:1−h#Ł

cosh"ml:1# ðsinhml¦0
1
cosh ml tanh"ml:1#Ł

"3[4b#

where m �z1 Bi:t[ The temperature di}erence between
the plate surface and ~uid is

Tw"x#−Tf "x# �
z2q9

1lsm

×
ðsinh ml¦0

1
cosh ml tanh"ml:1#Ł−0¦ sinh ml

cosh ml
[ "3[5#

In the absence of _ns\ equation "3[3# can be rewritten as

Tw"x#−Tf "x# �
z2q9

1lsm
tanh−0"ml#[ "3[6a#

For the corrugated wall model of Fig[ 0"d#\ the tem!
perature di}erence Tw−Tf as given by equation "3[6a#
neglects the contribution from _n attachments\ hence
represents an overestimation under Type II boundary
conditions[ As the length of the _n is 0:3 of that of the
corrugated wall\ it is expected that Tw−Tf is smaller than
that given by equation "3[6a# and is approximately given
by

Tw"x#−Tf "x# �
0

"0¦0:3#
z2q9

1lsm
tanh−0"ml#[ "3[6b#

When 9[0 ³ ml ³ 0\ the exact solution "3[5# can be
replaced by the approximate solution "3[6b# with an error
less than 09)[ For a corrugated wall with many _n
attachments "Fig[ 0"c##\ the total _n length is half that of
the wall\ hence the approximate solution for Tw−Tf is

Tw"x#−Tf "x# �
q9t

2lsz1 Bi:2
tanh−0"z1 Bi:2H:t#[

"3[7#

The ~uid temperature Tf"x# is a linear function of x and
is obtained by an energy balance analysis similar to that
leading to equation "2[8#\ as

Tf "x# � T9¦
1q9x

rfcpv9H
[ "3[8#

3[2[ Overall heat transfer coef_cient h¹

The overall heat transfer coe.cient h¹ is again de_ned
according to equation "2[07#[ It can be readily shown that
the logarithmic mean temperature di}erence DTm for the
iso~ux plates is simply Tw−TÞf[ Thus\ from equation
"2[07# we can write

1LWh¹ ðTw"x#−Tf "x#Ł � LðNsz2q9t¦qw"x#Ł "3[09#

where qw"x# is given in equation "2[09#[ The left!hand!
side of equation "3[09# is the rate of heat lost to the
cooling medium via convection\ which must be balanced
by the rate of heat input from the source*the right!
hand!side of equation "3[09#[ The resulting expression
for h¹ is identical to that given by equation "2[19#\ but its
magnitude is di}erent as the local heat transfer coe.cient
h in each case di}ers[ For developed laminar ~ows in a
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regular hexagonal duct with uniform heat ~ux along the
walls\ the local heat transfer coe.cient is ð6Ł

h � 3[910
lf

a
[ "3[00#

Equations "2[04# and "2[05# continue to apply for the
pressure drop across the heat sink[

The maximum temperature of the plate surface occurs
at its trailing edge x � L\ with

Tw"L# � T9¦q9 0
1L

rfcpv9H
¦

0
h¹1[ "3[01#

The thermal design objective of any heat sink associated
with iso~ux surfaces is to maximise the overall heat trans!
fer coe.cient h¹ such that Tw"L# is contained within safe
operating temperature limits[

4[ Heat transfer ef_ciency

4[0 Comparison with ducts without honeycombs

It is of convenience to non!dimensionalise the overall
heat transfer coe.cient h¹ for a honeycomb heat sink as

h¹

ls:a
� 0

clf

ls 1 60−
t
a

¦0
5ls

clf

t
a1

0:1

tanh $
H
a 0

2ls

1clf

t
a1

−0:1

%7
"4[0#

where c � 2[242 if isothermal boundary condition holds
and c � 3[910 if iso~ux condition holds[ When ls Ł lf\
H Ł a and a Ł t "which are expected to be satis_ed by
typical micro!cell aluminium honeycombs#\ equation
"4[0# simpli_es to

h¹

ls:a
� 0

5clf

ls

t
a1

0:1

tanh $
H
a 0

2ls

1clf

t
a1

−0:1

%[ "4[1#

The predicted overall heat transfer coe.cient for alu!
minium honeycombs with ls � 199 W "m−0 K−0# and
a � 0 mm is displayed as a function of t:a in Fig[ 1"a#
for air cooling and Fig[ 1"b# for water cooling[ Both
isothermal and iso~ux boundary conditions are con!
sidered and two values of the ratio of heat sink thickness
to cell size H:a are selected] 09 and 19[ The overall heat
transfer coe.cient h¹ for iso~ux condition is about 19)
larger than when the plate surfaces are isothermal\ and h¹

increases as H:a increases[ In the absence of honeycombs\
the overall heat transfer coe.cient of a duct consisting
of parallel plates of spacing H is h¹0 � c0lf:1H where
c0 � 6[43 of the plates are isothermal and c0 � 7[124 if the
plates release constant heat ~ux ð5Ł[ Thus\ h¹0 is typically of
the order of 090 W "m−1 K−0# for air cooling and 091 W
"m−1 K−0# for water cooling\ which is about two order
of magnitudes smaller than when the duct is made of the
same plates but with a metal honeycomb core[

4[1[ Comparison with open!celled metal foams

If\ instead of honeycombs\ the heat sink is made of a
three!dimensional\ open celled metal foam "e[g[\ ERG
Duocelþ aluminium foam# sandwiched between two iso!
thermal plates\ its overall heat transfer coe.cient
becomes ð1Ł

h¹ foam

ls:a
� 0[571 0Pr0:2 lf

ls1
0:1

0
v9a
nf 1

9[2 r0:1

"0[424r−0:1−0#9[2

"4[2#

where a is the cell size and r is the relative density of
the foam[ For a regular honeycomb\ r � 1t:a "if a Ł t#[
Selected results of the ratio\ h¹:h¹ foam\ suggest that for for!
ced air cooling\ metal honeycombs compete well against
metal foams with open cells\ especially when the relative
density is small "r ³ 9[0#[ The behaviour depends weakly
on air velocity\ with h¹:h¹ foam�v9

−9[2[ For water cooling\
metal foams are about twice as e.cient as metal honey!
combs[

The ~ows are essentially laminar in honeycombs and
turbulent in metal foams "due to the presence of sharp
cell edges ð1Ł#[ However\ at the same relative density level\
the surface area density of a honeycomb is in general

much larger than that of the metal foam "a � 1z2r0:1:t
for honeycomb and afoam � 1z2pr0:1:a for metal foam#[
This may explain why compact heat exchangers made of
micro!cell honeycombs with laminar ~ows are competing
well against those made of metal foams with turbulent
~ows[ Notice also that the pressure drop of laminar ~ow
across a honeycomb "Dp�v9# is relatively small com!
pared to that of turbulent ~ow across a metal foam where
Dp�v0[5

9 ð1Ð3Ł\ potentially an advantage when the ~ow
velocity is large both in terms of constraints on pump:air
handler and ~ow induced noise[

It is worth mentioning that the heat transfer model
proposed by Lu\ Stone and Ashby "LSA# ð1Ł for metal
foams is based on a cubic array of ligaments\ thermally
correlated with a bank of cylinders[ In reality\ the cell
morphology of a typical metal foam "e[g[\ ERG Duocelþ#
is perhaps more adequately represented by an ordered
array of tetrakaidecahedra with non!circular\ possibly
sharp!edged ligaments ð2Ð3Ł[ The LSA model predicts
correct trends of heat transfer\ but overestimates the total
heat transfer rate when compared with experimental
measurements[ Accordingly\ empirical proportionality
coe.cients are needed to represent the e}ective solid
thermal conductivity and the cell edge diameter ð2\ 3Ł[
The present model for calculating thermal transport in a
metal honeycomb is much more accurate*the cell mor!
phology is represented correctly\ the laminar ~ow based
local heat transfer coe.cient as well as the pressure drop
are obtainable numerically\ and the solution based on
the corrugated wall model is exact except for the e}ects
of _n attachments[
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Fig[ 1[ "a# Overall heat transfer coe.cient of a heat sink made of regular aluminium honeycomb plotted as a function of t:a for air
cooling and "b# water cooling^ the cell size is _xed at a � 0 mm[ "c# Scaling index I plotted as a function of t:a for air cooling and
"d# water cooling[

4[2[ Effects of cell orientation and double cell wall
thickness

The heat transfer model shown in Fig[ 0 assumes that
the hexagonal cell is oriented in a way that two cell walls
are parallel to the substrates[ If the cell is rotated 89>
relative to the y!axis so that the two walls are now per!
pendicular to the substrates "Fig[ 0"b##\ how would the
heat removal e.ciency of the honeycomb change< The
answer is that the total heat transfer rate decreases\ with
a new overall heat transfer coe.cient given by

h¹ � h 60−
t
a

¦
4
5

t
aX

1
Bi

tanh"2zBi:7H:t#7[ "4[3#

This result is obtained by following the same analytical
procedures as those leading to equation "2[19#\ and it is

valid for both isothermal and iso~ux conditions[ The
characteristic length scale of the problem increases to
L� � rfcpv9H:1Lh¹\ hence the ~uid temperature decreases
ðcf[ equation "2[00#Ł[ Thus\ the cell orientation as depicted
in Fig[ 0"b# with two horizontal cell walls is favoured
over other orientations for best heat transfer e.ciency[

Commercially available micro!cell honeycombs
usually consist of regular hexagonal cells having thick!
ness t for four walls and double thickness 1t for the other
two walls "Fig[ 0"b##[ In this case\ the model of corrugated
wall with _n attachments shown in Fig[ 0"c# is still valid
except for replacing the thickness of the _ns with 1t[
Without giving details\ it is found that this model leads
to an overall heat transfer coe.cient identical to that for
a regular honeycomb with uniform wall thickness\ i[e[\
equation "3[02#[
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5[ Optimal thermal design

5[0[ Order of ma`nitude analysis

To address the issue of the existence of an optimal
cell morphology that would maximise the heat transfer
performance of a metal honeycomb\ we _rst perform an
order of magnitude analysis similar to that described by
Bejan ð6\ 01Ł for a stack of parallel boards cooled by
laminar forced convection[ For simplicity\ the analysis is
restricted to isothermal conditions and it is assumed that
the cell walls attain the same constant temperature Tw

as that of the substrates[ Furthermore\ let the physical
dimensions of the heat sink be _xed at L\ W\ H and the
pressure drop across the sink be predetermined at Dp
"due to speci_ed pump\ compressor or air handler#[ The
relative density of the honeycomb is taken to be small
"t:a ð 0# so that the cell wall thickness may be ignored[

Consider _rst the limit when the cell size approaches
zero "a : 9#[ Each hexagonal channel can be considered
as an in_nitely long duct\ with the ~uid temperature at
the outlet\ Te\ approaching the cell wall temperature\ Tw[
The laminar ~ow in each channel is fully developed and\
from equation "2[04#\ the average ~ow velocity is related
to the pressure drop by vf � a1Dp:1mfL[ The total heat
transfer rate from the heat sink\ Q � m¾ cp"Te−T9#\ is\
therefore\

Q 3
HWLDprfcp"Tw−T9#

1mf 0
a
L1

1

[ "5[0a#

In the other limit a : �\ the pressure drop in the honey!
comb heat sink is dominated by entrance e}ects[ The
mean ~ow velocity and the average heat transfer
coe.cient in each channel are vf ¼ 0[12"Dp:rf#0:1 and
h ¼ 0[3"lf:a#"Re Pr a:L#0:1\ respectively ð7Ł[ The total heat
transfer rate can be calculated by multiplying the total
number of channels to the heat transfer rate from a single
channel\ yielding

Q 3 5[10
HWlf Pr0:1"Tw−T9#

L 0
DpL1

mfnf 1
0:3

0
a
L1

−0

[

"5[0b#

Equations "5[0a# and "5[0b# reveal that the rate of heat
lost to the convective medium decreases as a1 when a :
9 and as a−0 when a : �[ The Q"a# curve in between is
unknown\ but the optimal cell size aopt at which Q is
maximised is surmised to be of the same order as the a
value obtained by intersecting the asymptotes "5[0a# and
"5[0b#[ Thus\

"a:L#opt ¼ 1[21Pr0:5Be−0:3 "5[1#

where the dimensionless parameter Be � DpL1:mfnf is the
Bejan number ð01\ 02Ł[ For the optimal spacing of parallel
boards cooled by convection\ the same order of mag!
nitude analysis suggests that the coe.cient 1[21 in equa!

tion "5[1# should be replaced by 1[62 ð01Ł[ The result is
found to be fairly accurate compared with more exact
solutions from numerical calculations ð01Ł[

5[1[ Effects of _nite cell wall thickness

The above order of magnitude analysis neglects the
e}ects of cell wall thickness t and assumes that all cell
walls attain uniform temperature Tw[ These restrictions
will be relaxed below to obtain the optimal relative den!
sity "or\ equivalently\ the optimal t:a# for best heat trans!
fer performance[

A popular measure of the heat transfer performance
of a heat sink is the ratio of total heat transfer rate to the
pumping power needed to force the ~uid through\ h¹:Dp
ð1\ 03Ł[ The optimal cell morphology of a honeycomb is
one that would maximise h¹:Dp[ From equations "2[04#
and "3[02#\ a non!dimensional scaling index I is con!
veniently introduced as follows

I �
h¹
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The attributes of both _nite cell wall thickness and non!
uniform thermal _elds are accounted for in equation
"5[2#[ The scaling index I is plotted as a function of t:a
for air cooling on Fig[ 1"c# and for water cooling on Fig[
1"d#[ Both isothermal and iso~ux conditions are used\
and the e}ect of increasing H:a from 09Ð19 is studied[
For air cooling\ I is maximised at t:a ¼ 9[94 if H:a � 09\
and at t:a ¼ 9[04 if H:a � 19[ For water cooling\ the
maximum of I occurs at much larger values of t:a[ Also\
changing the isothermal condition to constant!~ux con!
dition increases the value of t:a at which I is maximised[
In general\ the optimal cell morphology\ represented here
by t:a\ is not constant but dependent upon the geometry
and heat transfer condition of the heat sink\ and the type
of convective cooling medium[

For heat exchanger applications where weight is cause
for concern\ the more appropriate merit index is I:r or\
equivalently\ I:"t:a# as r � 1t:a for a regular honeycomb[
Hence\ I:r is maximised when t:a : 9[

6[ Concluding remarks

The transport of heat in micro!cell aluminium honey!
combs subjected to convective cooling has been analysed
using the corrugated wall model[ Except for the e}ects of
_n attachments which are modelled approximately\ the
approach is felt to be fairly accurate[ Simple closed form
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solutions are obtained for the thermal _elds and overall
heat transfer coe.cient as functions of cell morphological
parameters and heat transfer conditions[ These are ana!
lysed to _nd the optimal cell morphology for maximum
overall heat transfer e.ciency[ The heat transfer charac!
teristics of a honeycomb are similar to those of metal
foams\ although the underlying mechanisms are di}erent[
In contrast to turbulent ~ows in metal foams\ the stream!
ing of ~uid in a honeycomb is essentially laminar*this
is nevertheless remunerated by its superior surface area to
volume ratio\ leading to about two order of magnitudes
augmentation in heat dissipation e.ciency when an open
channel is designed with a metal honeycomb core[ The
performance would be further improved if a honeycomb
heat sink is designed with turbulent ~ow\ although the
~ow induced noise may become signi_cant[ The results
are of relevance for thermal management applications in
high power electronics where compact and highly e.cient
heat dissipation media are required[
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